33 research outputs found

    Nonlinear computations underlying temporal and population sparseness in the auditory system of the grasshopper

    Get PDF
    Sparse coding schemes are employed by many sensory systems and implement efficient coding principles. Yet, the computations yielding sparse representations are often only partly understood. The early auditory system of the grasshopper produces a temporally and population-sparse representation of natural communication signals. To reveal the computations generating such a code, we estimated 1D and 2D linear-nonlinear models. We then used these models to examine the contribution of different model components to response sparseness. 2D models were better able to reproduce the sparseness measured in the system: while 1D models only captured 55% of the population sparseness at the network's output, 2D models accounted for 88% of it. Looking at the model structure, we could identify two types of computation, which increase sparseness. First, a sensitivity to the derivative of the stimulus and, second, the combination of a fast, excitatory and a slow, suppressive feature. Both were implemented in different classes of cells and increased the specificity and diversity of responses. The two types produced more transient responses and thereby amplified temporal sparseness. Additionally, the second type of computation contributed to population sparseness by increasing the diversity of feature selectivity through a wide range of delays between an excitatory and a suppressive feature. Both kinds of computation can be implemented through spike-frequency adaptation or slow inhibition—mechanisms found in many systems. Our results from the auditory system of the grasshopper are thus likely to reflect general principles underlying the emergence of sparse representations

    Timescale-invariant representation of acoustic communication signals by a bursting neuron

    Get PDF
    Acoustic communication often involves complex sound motifs in which the relative durations of individual elements, but not their absolute durations, convey meaning. Decoding such signals requires an explicit or implicit calculation of the ratios between time intervals. Using grasshopper communication as a model, we demonstrate how this seemingly difficult computation can be solved in real time by a small set of auditory neurons. One of these cells, an ascending interneuron, generates bursts of action potentials in response to the rhythmic syllable-pause structure of grasshopper calls. Our data show that these bursts are preferentially triggered at syllable onset; the number of spikes within the burst is linearly correlated with the duration of the preceding pause. Integrating the number of spikes over a fixed time window therefore leads to a total spike count that reflects the characteristic syllable-to-pause ratio of the species while being invariant to playing back the call faster or slower. Such a timescale-invariant recognition is essential under natural conditions, because grasshoppers do not thermoregulate; the call of a sender sitting in the shade will be slower than that of a grasshopper in the sun. Our results show that timescale-invariant stimulus recognition can be implemented at the single-cell level without directly calculating the ratio between pulse and interpulse durations

    CNTNAP2 is a direct FoxP2 target in vitro and in vivo in zebra finches: complex regulation by age and activity

    Get PDF
    Mutations of FOXP2 are associated with altered brain structure, including the striatal part of the basal ganglia, and cause a severe speech and language disorder. Songbirds serve as a tractable neurobiological model for speech and language research. Experimental downregulation of FoxP2 in zebra finch Area X, a nucleus of the striatal song control circuitry, affects synaptic transmission and spine densities. It also renders song learning and production inaccurate and imprecise, similar to the speech impairment of patients carrying FOXP2 mutations. Here we show that experimental downregulation of FoxP2 in Area X using lentiviral vectors leads to reduced expression of CNTNAP2, a FOXP2 target gene in humans. In addition, natural downregulation of FoxP2 by age or by singing also downregulated CNTNAP2 expression. Furthermore, we report that FoxP2 binds to and activates the avian CNTNAP2 promoter in vitro. Taken together these data establish CNTNAP2 as a direct FoxP2 target gene in songbirds, likely affecting synaptic function relevant for song learning and song maintenance

    Systemic Metabolomic Changes in Blood Samples of Lung Cancer Patients Identified by Gas Chromatography Time-of-Flight Mass Spectrometry.

    Get PDF
    Lung cancer is a leading cause of cancer deaths worldwide. Metabolic alterations in tumor cells coupled with systemic indicators of the host response to tumor development have the potential to yield blood profiles with clinical utility for diagnosis and monitoring of treatment. We report results from two separate studies using gas chromatography time-of-flight mass spectrometry (GC-TOF MS) to profile metabolites in human blood samples that significantly differ from non-small cell lung cancer (NSCLC) adenocarcinoma and other lung cancer cases. Metabolomic analysis of blood samples from the two studies yielded a total of 437 metabolites, of which 148 were identified as known compounds and 289 identified as unknown compounds. Differential analysis identified 15 known metabolites in one study and 18 in a second study that were statistically different (p-values <0.05). Levels of maltose, palmitic acid, glycerol, ethanolamine, glutamic acid, and lactic acid were increased in cancer samples while amino acids tryptophan, lysine and histidine decreased. Many of the metabolites were found to be significantly different in both studies, suggesting that metabolomics appears to be robust enough to find systemic changes from lung cancer, thus showing the potential of this type of analysis for lung cancer detection

    Metabolite-related dietary patterns and the development of islet autoimmunity

    Get PDF
    The role of diet in type 1 diabetes development is poorly understood. Metabolites, which reflect dietary response, may help elucidate this role. We explored metabolomics and lipidomics differences between 352 cases of islet autoimmunity (IA) and controls in the TEDDY (The Environmental Determinants of Diabetes in theYoung) study. We created dietary patterns reflecting pre-IA metabolite differences between groups and examined their association with IA. Secondary outcomes included IA cases positive for multiple autoantibodies (mAb+). The association of 853 plasma metabolites with outcomes was tested at seroconversion to IA, just prior to seroconversion, and during infancy. Key compounds in enriched metabolite sets were used to create dietary patterns reflecting metabolite composition, which were then tested for association with outcomes in the nested case-control subset and the full TEDDY cohort. Unsaturated phosphatidylcholines, sphingomyelins, phosphatidylethanolamines, glucosylceramides, and phospholipid ethers in infancy were inversely associated with mAb+ risk, while dicarboxylic acids were associated with an increased risk. An infancy dietary pattern representing higher levels of unsaturated phosphatidylcholines and phospholipid ethers, and lower sphingomyelins was protective for mAb+ in the nested case-control study only. Characterization of this high-risk infant metabolomics profile may help shape the future of early diagnosis or prevention efforts

    Encoding of amplitude modulations by auditory neurons of the locust: influence of modulation frequency, rise time, and modulation depth

    Get PDF
    Using modulation transfer functions (MTF), we investigated how sound patterns are processed within the auditory pathway of grasshoppers. Spike rates of auditory receptors and primary-like local neurons did not depend on modulation frequencies while other local and ascending neurons had lowpass, bandpass or bandstop properties. Local neurons exhibited broader dynamic ranges of their rate MTF that extended to higher modulation frequencies than those of most ascending neurons. We found no indication that a filter bank for modulation frequencies may exist in grasshoppers as has been proposed for the auditory system of mammals. The filter properties of half of the neurons changed to an allpass type with a 50% reduction of modulation depths. Contrasting to reports for mammals, the sensitivity to small modulation depths was not enhanced at higher processing stages. In ascending neurons, a focus on the range of low modulation frequencies was visible in the temporal MTFs, which describe the temporal locking of spikes to the signal envelope. To investigate the influence of stimulus rise time, we used rectangularly modulated stimuli instead of sinusoidally modulated ones. Unexpectedly, steep stimulus onsets had only small influence on the shape of MTF curves of 70% of neurons in our sample

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    Get PDF
    In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure fl ux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defi ned as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (inmost higher eukaryotes and some protists such as Dictyostelium ) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the fi eld understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation it is imperative to delete or knock down more than one autophagy-related gene. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways so not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular autophagy assays, we hope to encourage technical innovation in the field

    Repräsentation und Unterscheidbarkeit amplitudenmodulierter akustischer Signale im Nervensystem von Feldheuschrecken

    Get PDF
    Eine wesentliche Aufgabe auditorischer Systeme besteht in der Erkennung und Klassifikation verhaltensrelevanter Signale. Die akustischen Kommunikationssignale vieler Feldheuschrecken zeichnen sich durch artspezifische Modulationen der Signalamplitude aus, die im Kontext der Partnerwahl zur Erkennung der eigenen Art genutzt werden. Die Kommunikation ist jedoch auch als Basis für sexuelle Selektion von Interesse - einer Abschätzung der Qualität des Senders anhand der akustischen Signale, welche eine Bewertung subtiler Variationen der artspezifischen Musters erfordert. Das Ziel dieser Arbeit bestand darin zu untersuchen, wie amplitudenmodulierte akustische Signale in den Antworten identifizierter auditorischer Interneurone der zweiten und dritten Verarbeitungsstufe repräsentiert werden, insbesondere, wie gut sie anhand dieser Antworten unterscheidbar sind. Dazu wurden (i) sinusförmig amplitudenmodulierte Stimuli genutzt und die Parameter Modulationsfrequenz und Modulationstiefe systematisch variiert, (ii) individuelle Gesänge der gleichen Art, und (iii) im Grundmuster zeitlich reskalierte Gesänge. Lokale Interneurone zeichneten sich aus durch: ein oft sehr hohes zeitliches Auflösungsvermögen, hohe Empfindlichkeit gegenüber Schwankungen der Signalamplitude, sowie gute Unterscheidbarkeit der sinusförmig amplitudenmodulierten Signale und der Gesänge auf der Basis von Spikeantworten. Bei den aufsteigenden Interneuronen nahm die Fähigkeit zur zeitlichen Ankopplung der Spikes an die Amplitudenmodulationen der Stimuli ab, was sich auch in deren reduzierter Unterscheidbarkeit äußerte. Ursächlich hierfür war einerseits die Zunahme der Antwortvariabilität (Jitter der Spikezeitpunkte), aber auch verstärkt auftretende Filtereigenschaften. Auf dieser dritten Verarbeitungsebene kommt es zu einer stärkeren Spezialisierung auf bestimmte zeitliche Aspekte des Stimulus, die als Grundlage einer verhaltensrelevanten Klassifikation von akustischen Signalen interpretiert werden kann.A central task of auditory systems is the recognition and classification of behaviorally relevant signals. The communication signals of many grasshoppers can be characterized by a species-specific pattern of amplitude modulation, which is mainly used for species recognition in the context of mate finding. Additionally, the communication is also of interest with respect to sexual selection - an evaluation of the signaler''s quality from the signal pattern, which requires the quantification of subtle variations of the common species-specific pattern.The goal of this study was to investigate how amplitude modulated acoustic signals are represented in the responses of identified 2nd and 3rd order auditory interneurons, particularly, how well they can be discriminated on the basis of the responses. For this (i) sinusoidal amplitude modulated stimuli were used and the parameters modulation frequency and modulation depth were systematically varied, (ii) individual songs of the same species and (iii) songs with temporal rescaled basic pattern were presented. Local interneurons can be characterized by: mostly high temporal resolution capacities, high sensitivity to fluctuations of the signal amplitude as well as a good distinguishability of sinusoidal amplitude modulated stimuli and songs on the basis of the spike trains. In ascending interneurons the synchronization to the amplitude modulations decreased, which also appeared in a reduced discrimination performance. This is caused by an increase of response variability (jitter of spike timing) but also by distinctive filter properties of the respective neurons. Neurons on this third processing level exhibit a greater specialization to particular temporal aspects of the stimulus. This can be interpret as a basis of a behaviorally relevant classification of acoustic signals
    corecore